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Abstract— In this paper, we consider dark solitons in one-dimensional Bose-Einstein condensate in parabolic trapped optical lattice. 
Analytical and numerical calculations are performed to determine the existence and stability of dark solitons. Our analysis is based on 
continuous Gross-Pitaevskii equation and discrete nonlinear Schrodinger equation. We show that the strength of external magnetic trap 
can change the stability of dark solitons. Stability windows of dark solitons are presented and stability approximations are derived using 
perturbation theory, with numerical results. 

Index Terms—Bose-Einstein condensate, Dark solitons, Discrete nonlinear Schrodinger equation, External magnetic trap, Gross-
Pitaevskii equation, Optical lattice, Perturbation theory. 

——————————      —————————— 

1     INTRODUCTION                                                                    
OSE-Einstein Condensate (BEC) is a quantum physical 
phenomenon which occurs in many substances at very 
low temperatures [1]. In order to cool a system to observe 

condensation it is typical to trap the condensate with a poten-
tial. The governing equation for BEC needs to incorporate the 
nonlinear interactions of its constituents [2]. Thus the Discrete 
Nonlinear Schrodinger (DNLS) equation needs to be applied. 
The DNLS equation admits bright and dark solitons with fo-
cusing and defocusing nonlinearities, respectively. The dy-
namics of discrete dark solitons in presence of external mag-
netic trap with thermal and dynamical instabilities have been 
studied [3], [4], and [5]. Using Gross-Pitaevskii (GP) equation 
BEC trapped optical lattices have been described [6], [7], [8], 
[9], [10], and [11]. A controlled method for creating dark soli-
tons by counter propagation of laser beams has been recently 
examined [12]. The long Bosonic Josephson junctions and BEC 
trapped optical lattices are also studied [13], [14]. 
      In this paper we study dark solitons in BEC in parabolic 
trapped optical lattice. We use continuous GP equation and 
DNLS equation. We assume a parabolic shaped BEC, which 
can be described by one dimensional GP equation- 
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here  ),( txΨ  is the mean field wave function, 0&Vk are 
strength of external magnetic potential and optical  lattice po-
tential  respectively, while λ  is the wavelength of interference 
pattern created by counter  propagated laser beams. 
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      In tight binding limit, equation (1) becomes following 
DNLS equation 

nnnnnn nnki Ψ++ΨΨ+Ψ−Ψ+Ψ−=Ψ −+ )2()2( 22
11ε              (2) 

where the over dot denotes the time derivative, ε  is the cou-
pling constant between two adjacent sites while n is the lattice 
site index. 
      In this paper we examine the condition for existence and 
stability of onsight dark solitons in DNLS. For smallε , the 
perturbation theory is used followed by numerical computa-
tions in MATLAB. 

2    ANALYTICAL SET UP AND EIGENVALUE 
EQUATIONS 

Stationary solution of system (2) are sought for in the form 
)exp( tiZ nn µ−=Ψ , where nZ is a time independent and real 

valued wave function and it satisfies the stationary equation 
0)2()2( 22

11 =−++++−− −+ nnnnnnn ZZnnkZZZZZ µε         (3) 

      To examine the linear stability of nZ , we introduce follow-
ing ansatz 

nnn YZ δ+=Ψ  where δ<<1, and substitute this ansatz into 
equation (2), we find following linearized equation at )(δO : 
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writing nnn iBAY += , and linearizing inδ , we find 
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And the operators )(ε+L and )(ε−L  are defined by 
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      Let the eigenvalues of M be denoted by id , which implies 
that nZ is stable if 0)Im( =d . Since equation (6) is linear, we 
can eliminate one of the ‘eigenvectors’, for instance nB , and 
then we obtain the following eigenvalue problems 
 nn AALL ωλεε ==−+

2)()(                                                              (7)                                             

3    ANALYTICAL CALCULATIONS 
In the uncoupled limit 0=ε  we denote the exact solutions of 
equation (3) by )0(

nn ZZ = , in which each  nZ  must take one of 
the three values given by  

)2(,0 2 nnk +−± µ  
      Following Ref. [1], using a perturbative expansion, the 
dark soliton solutions are obtained as 
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and its eigenvalues for small ε  are given by    
  )(4)2( 22222 εµεµω Onnk +−+−=                         (9)                                  
      The instability of onsight discrete dark soliton is due to the 
collision of the smallest eigenvalue (9) with an eigenvalue bi-
furcating from lower and upper edge of continuous spectrum 
for small and large µ, respectively. Equating these quantities 
we find the critical value of µ as a function of coupling con-
stant ε  i.e. 
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both 1
crk & 2

crk give approximation boundaries of the instability 
region in the ( )k,ε plane. 

4 COMPARISION WITH NUMERICAL 
CALCULATIONS AND DISCUSSION 

Using Newton–Raphson method, we have numerically solved 
the static equation (2), and analyzed the stability of the numer-
ical solution by solving the eigenvalue problem (4). We con-
sider 10=µ  in the model. 
      Figure 1 provides a full description of the dynamics of the 
parametrically driven DNLS model regarding the intervals of 
stability/instability of the model. Analytical prediction for the 
stability range as obtained by the conditions of collision of the 
phase mode eigenfrequency with the continuous spectrum 
from Equations (10) & (11). 
      Figure 2(a), 2(b) & 2(c) illustrate the typical stability/ in-
stability scenario for different values of k (0.5, 0.2 & 0.1), with 
a fixed coupling constant 1.0=ε . 
      Figure 3(a), 3(b) & 3(c) illustrate the typical stability/ in-
stability scenario for different values of ε (0.1, 0.6 & 2.0), with 
a fixed value of external magnetic potential k=0.1. In both cas-
es we find that dark soliton is stable with a fixed range of 

ε and k, such values of ε and k are optimum. Ultimately the 
system governs oscillatory instability. 

 
 

 

Fig. 1. The stability –instability region in the two parameter 
space ε−k . The solid red and black lines are the analytical 
approximations of equation (10) and (11).  
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Fig. 2(a). The eigenvalue structure of intersite dark soliton for 

5.0&1.0 == kε  
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Fig. 2(b). The eigenvalue structure of intersite dark soliton for 

2.0&1.0 == kε  
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Fig. 2(c). The eigenvalue structure of intersite dark soliton for 

1.0&1.0 == kε  
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Fig. 3(a). The eigenvalue structure of intersite dark soliton for 

1.0&1.0 == εk  
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Fig. 3(b). The eigenvalue structure of intersite dark soliton for 

6.0&1.0 == εk  
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Fig. 3(c). The eigenvalue structure of intersite dark soliton for 

2&1.0 == εk  

5    CONCLUSION 
In this paper, we have considered BEC in parabolic trapped 
optical lattice to determine the existence and stability of on-
sight dark solitons. 
      Our analysis is based on continuous GP equation and 
DNLS equation. We have shown that the strength of external 
magnetic trap changed the stability of dark soliton. The exist-
ence and stability of onsight dark soliton is determined using 
perturbative analysis, which is followed by numerical compu-
tations in MATLAB. 
      We have considered the chemical potential as μ=10 and 
lattice index n=50. The result is an oscillatory instability which 
is expected from analysis. 
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